Из какой стали делают рессоры. Характеристика и анализ рессорных сталей

Упругие свойства рессорного подвешивания оценивают с помощью силовых характеристик и коэффициентом жесткости или коэффициентом гибкости (гибкостью). Кроме того, рессоры и пружины характеризуются геометрическими размерами. К основным размерам (рис. 1) относятся: высота рессоры или пружины в свободном состоянии без груза Н св и высота под грузом H гр, длина рессоры, диаметр пружины, диаметр прутка, число рабочих витков пружины. Разность между Н св и H гр называется прогибом рессоры (пружины) f . Прогиб, полученный от спокойно лежащего на рессоре груза, называется статическим. У листовых рессор для более удобного измерения прогиб определяется размерами Н св и H гр около хомута. Гибкие свойства рессор (пружин) определяются одной из двух величин:

  • коэффициентом гибкости (или просто гибкостью);
  • коэффициентом жесткости (или просто жесткостью).

Рис. 1 - Основные размеры рессор и пружин

Прогиб рессоры (пружины) под действием силы, равной единице, называется гибкостью f 0:

где Р - внешняя сила, действующая на рессору, Н;

f - прогиб рессоры, м.

Важной характеристикой рессоры является ее жесткость ж , которая численно равна силе, вызывающей прогиб, равный единице. Таким образом,

ж = P/f.

Для рессор, у которых прогиб пропорционален нагрузке, справедлива равенство

P = ж f.

Жесткость - величина, обратная гибкости. Гибкость и жесткость рессор (пружин) зависят от их основных размеров. При увеличении длины рессоры или при уменьшении числа и сечения листов гибкость ее увеличивается, а жесткость уменьшается. У пружин с увеличением среднего диаметра витков и их числа и с уменьшением сечения прутка гибкость увеличивается, а жесткость уменьшается.

По величине жесткости и прогиба пружины или рессоры определяется линейная зависимость между ее прогибом и силой упругости P = ж f, представленная графически на (рис. 2). Диаграмма работы цилиндрической пружины, не имеющей трения (рис. 2, а), изображается одной прямой линией 0А, соответствующей как нагружению пружины (возрастанию Р), так и ее разгрузке (уменьшению Р). Жесткость в этом случае величина постоянная:

ж = P/f∙tg α.

Пружины переменной жесткости (апериодические) без трения имеют диаграмму в виде линии 0АВ (рис. 2, б).

Рис. 2 - Диаграммы работы пружин (а, б) и рессоры (в)

При работе листовой рессоры возникает трение между ее листами, что способствует затуханию колебаний подрессоренного экипажа и создает более спокойное его движение. В то же время слишком большое трение, увеличивая жесткость рессоры, ухудшает качество подвешивания. Характер изменения силы упругости рессоры при статическом нагружении изображен на (рис. 2, в). Эта зависимость представляет замкнутую кривую линию, верхняя ветвь которой 0A 1 показывает зависимость между нагрузкой и прогибом рессоры при ее нагружении, а нижняя А 1 А 2 0 - при разгрузке. Разница между ветвями, характеризующими изменение сил упругости рессоры при ее нагружении и разгрузке, обусловливается силами трения. Площадь, ограниченная ветвями, равна работе, затраченной на преодоление сил трения между листами рессоры. При нагрузке силы трения как бы сопротивляются увеличению прогиба, а при разгрузке препятствуют выпрямлению рессоры. В вагонных рессорах сила трения увеличивается пропорционально прогибу, так как соответственно возрастают силы прижатия листов друг к другу. Величина трения в рессоре обычно оценивается так называемым коэффициентом относительного трения φ, равным отношению силы трения R тр к силе Р, создающей упругую деформацию рессоры:

Величина силы трения связана с прогибом f и жесткостью рессоры ж , обусловленной ее упругими свойствами, зависимостью

Рессорно-пружинные стали – это специальные стали, которые предназначаются для производства различных упругих элементов, в частности пружин и рессор.

Данный тип материала относится к высоко- и среднелегированным сталям. Главное отличие рессорно-пружинной стали от иных видов – это значительно увеличенный предел текучести данного материала. Другими словами можно сказать, что этот тип обладает высокой степенью упругости, то есть возвращается в исходные состояния и форму после устранения нагрузки. Это параметрическое свойство обусловлено областью применения рессор и пружин. В нормальном режиме работы они постоянно подвергаются сжатию/растяжению или упругой деформации и должны выполнять свои функции даже после большого цикла наложения и снятия деформации. Также данный материал должен обладать хорошей пластичностью и высокой стойкостью к хрупким разрушениям.

Основными легирующими элементами являются кремний, марганец, вольфрам и никель. Эти присадки увеличивают сопротивление пластическим и упругим деформациям путем измельчения зерна сплава. Готовым продуктом можно считать и проволоку, которую в дальнейшем применяют при изготовлении витых и компонованных пружин.

Свойства рессорно-пружинной стали

Основными характеристиками для данного вида сталей является высокое сопротивление упругим деформациям и низкий коэффициент остаточного растяжения. Это связано с недопустимостью увеличения или уменьшения конструкционного размера пружины.

Хороших конструкционных и эксплуатационных свойств добиваются, протягивая заранее патентированную проволоку при низких температурах, при этом производят сильную обтяжку материала.

Процесс патентирования ведется в промежутке между двумя вытяжками, сталь нагревают выше температурной точки образования аустенита и затем охлаждают в ванне с расплавом свинца, при этом аустенит переходит в тонкопластинчатый сорбит и увеличивается её механическая прочность.

Для достижения одинаковых физико-химических свойств по всему сечению материала пружинная сталь должна пройти процесс прокаливания сквозной методикой, это обеспечит гомогенную структуру по всему сечению. Особенно важен этот метод для изготовления рессор и пружин большого диаметра, когда неравномерность свойств исходного материала может привести к разрушению готового изделия.

Как для любого другого материала, для рессорно-пружинной стали характерно наличие в составе углерода. В данном случае его содержание может колебаться в пределе 0.50-0.80 % от массы сплава. Дополнительно используют такие легирующие добавки:

  • кремний – до 2.5 %;
  • марганец – до 1.3 %;
  • вольфрам – до 1.3 %;
  • никель – до 1.7 %.

Стоит заметить, что хром и марганец при совместном легировании увеличивают сопротивление стали низким пластичным деформациям. Никель и вольфрам образуют тонкую и однородную структуру карбидной фракции, которая препятствует дислокации.

Рессорно-пружинная сталь очень критична к деформациям наружного слоя материала, так как эти напряжения являются концентраторами возможных дефектов готового изделия.

Закалка данного типа производится при температурах 850 – 880 о С, но после такой термической обработки сталь проявляет слабые упругие свойства из-за образования мартенсита, для повышения данного типа свойств её отпускают при температурах порядка 420-510 о С, что способствует образованию троостита и повышению упругой деформации сплава до предела прочности 1200-1900 МПа и пределу текучести 1100-1200 МПа. При этом проведение закалки изотермически – при постоянной температуре – положительно сказывается на показателях пластичности и вязкости материала.

Стали данного типа обладают хорошими антикоррозионными свойствами из-за наличия в составе сплава таких легирующих добавок как хром и молибден. Это положительно сказывается на длительности эксплуатации и препятствует образованию трещин во время работы.

Стоит отметить так же несколько основных недостатков рессорно-пружинной стали:

  • плохая свариваемость – это обусловлено разрушением наружного слоя материала и локальном перегреве детали;
  • сложность резки – некоторые трудности возникают при попытках реза такого типа стали, связанно это напрямую с большим сопротивление деформации.

Классификация пружинных сталей

Для начала разберем маркировку такого типа материала, чаще всего она имеет вид «50А2БВГ», где:
50 – содержание углерода в долях процента;
А2 – легирующий элемент №1 и его содержание в процентах;
Б,В,Г – легирующие элементы №2,3,4 и т.д.

Важно! Если после обозначения легирующего элемента не стоит число, значит, его массовое содержание не превышает 1.5%, если число 2 – массовая доля больше 1,5%, но меньше 2,5%, если 3 – массовая доля выше 2,5%.

Например, сталь 50ХГФ – это сплав, в котором содержание углерода составляет 0,50%, и легирующие компоненты хром, марганец и ванадий составляют меньше 1,5%.

Если в маркировке стали есть только цифра, например, ст 50, ст 65 и др., это обозначает, что она относится к углеродистым сталям, а если в названии есть минимум 2 элемента, такая рессорно-пружинная сталь относится к легированным.

Рассмотрим основные классификации данного типа:

  1. По способу обработки:
    1. Кованный и горячекатаный.
    2. Калиброванный.
    3. Со специальной обработкой наружных поверхностей.
    4. Горячекатаный круглый с обточенной поверхностью.
  2. По химическому составу стали:
    1. Качественная.
    2. Высококачественная.

Марка рессорно-пружинной стали дает возможность определить её конструкционные и физико-химические свойства, определить область использования и возможности по механической обработке.

Область использования пружинной стали

Исходя из названия, можно сделать вывод, что данный вид предназначен для использования в областях, связанных с большими упругими деформациями, растяжением, скручиванием. Применяют такую сталь для изготовления всевозможных видов пружин для разнообразного технологического оборудования, полосок стали под рессоры, суппорты и прочее.
Основные области использования:

  • производство рессор автомобилей и тяжелой техники;
  • производство пружин для технологично оборудования, при этом это относится к пружинам на сжатие и растяжение;
  • пружины плоские, цилиндрические, сложные из прутков различных сечений и др.
  • упругие элементы тяжелой техники, станкового оборудования;
  • пружины тракторной техники и локомотивной техники;
  • ножи земельной техники;
  • блокировочные и тормозные устройства;
  • обоймы подшипников.

Рассмотрим сводную таблицу самых распространенных марок рессорно-пружинных сталей с указанием их маркировки и области применения:

Маркировка Основные легирующие компоненты Эксплуатационные особенности
50ХГ Хром, марганец Рессоры автомобилей, пружины железнодорожной техники
50ХСА Хром, кремний, азот Упругие элементы часовой техники
55ХГР Хром, марганец, бор Штамповка пластин рессор
60С2 Кремний Валы с нагрузкой на скручивание, цанги, подпружиненные шайбы
60Г Марганец Пружинные кольца, бандажи, тормозные башмаки
65 Детали, работающие в условиях высокого трения
65С2ВА Кремний, вольфрам, азот Рессоры и пружины, работающие под высокой динамической нагрузкой
70Г2 Марганец Ножи для землеройных машин
70С3А Кремний, азот Тяжело нагруженные пружины механизмов
85 Фрикционные диски с высокой прочностью

Как видно из таблицы, величина и количество легирующих присадок напрямую отвечают за износостойкость и механическую прочность деталей. Видно, что с повышение содержания углерода от 0,5% до 0,85% увеличивается прочность и упругость материала, хром препятствует образованию ржавчины, вольфрам повышает твердость и красностойкость стали, а марганец увеличивает стойкость к ударам.

Ст. , ст. , ст. , ст. , ст. ,
ст. , ст. , ст.65ГА, ст.65С2ВА, ст.68А, ст.68ГА,
ст. , ст.70Г, ст.70С3А, ст.75, ст.80, ст.85

Применение рессорно-пружинной (пружинной) стали ГОСТ 14959-79 :
Сталь 50ХГ
* Применяется для производства автомобильных и тракторных рессор, пружин подвижного состава железнодорожного транспорта.
Сталь 50ХГА
* Применяется для производства рессор автомобильного транспота и тракторов, пружин подвижного состава железнодорожного транспорта.
Сталь 50ХГФА

Сталь 50ХСА
* Применяется для производства пружин часовых механизмов, крупных пружин ответственного назначения
Сталь 50ХФА
* Применяется для изготовления тяжелонагруженных ответственных деталей, к которым предъявляются требования высокой усталостной прочности; пружин, работающих при температурах до +300 °С; измерительных лент.
Сталь 51ХФА
* Применяется для производства катанки, ленты, используемых для изготовления тяжелонагруженных ответственных деталей, к которым предъявляются требования высокой усталостной прочности; для производства термически обработанной проволоки диаметром 1,2-5,5 мм, предназначенной для изготовления пружин.
Сталь 55С2
* Применяется для изготовления пружин и рессор, применяемых в автомобиле- и тракторостроении, на железнодорожном транспорте и в других отраслях машиностроения.
Сталь 55С2А
* Применяется для производства рессор автотранспорта, пружин подвижного состава железнодорожного транспорта, других пружин и рессор в различных отраслях машиностроения.
Сталь 55С2ГФ
* Применяется для изготовления пружин особо ответственного назначения, рессор автотранспорта.
Сталь 55ХГР
* Применяется для изготовления рессорной полосовой стали толщиной 3,0-24,0 мм.
Сталь 60Г
* Применяется для изготовления плоских и круглых пружин, рессор, пружинных колец и других деталей пружинного типа, от которых требуются высокие упругие свойства и износостойкость; бандажей, тормозных барабанов и лент, скоб, втулок и других деталей общего и тяжелого машиностроения; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин); измерительных лент.
Сталь 60С2
* Применяется для изготовления тяжелонагруженных пружин, торсионных валов, пружинных колец и шайб, цанг, фрикционных дисков.
Сталь 60С2А
* Применяется для изготовления тяжелонагруженных пружин, торсионных валов, пружинных колец и шайб, цанг, фрикционных дисков, шайб Гровера; пружинных упорных плоских внутренних эксцентрических колец, применяемых для фиксации деталей в корпусах до +200 °С; холоднокатаной термообработанной ленты толщиной 0,05-1,30 мм и плющеной термообработанной ленты толщиной 0,15-2,00 мм для изготовления пружинящих деталей и пружин, за исключением заводных; измерительных лент.
Сталь 60С2Г
* Применяется для изготовления автомобильных и тракторных рессор, пружин подвижного состава железнодорожного транспорта.
Сталь 60С2Н2А
* Применяется для производства ответственных и тяжелонагруженных пружин и рессор.
Сталь 60С2ХА
* Применяется для изготовления крупных высоконагруженных пружин и рессор ответственного назначения.
Сталь 60С2ХФА
* Применяется для изготовления ответственных и высоконагруженных пружин и рессор.
Сталь 65
* Применяется для производства рессор, пружин и других деталей, от которых требуется повышенные прочностные и упругие свойства, износостойкость; деталей, работающих в условиях трения при наличии высоких статических и вибрационных нагрузок; горячекатаного полосового профиля с уклоном для сельскохозяйственных машин; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин).
Сталь 65Г
* Применяется для производства пружин, рессор, упорных шайб, тормозных лент, фрикционных дисков, шестерней, фланцев, корпусов подшипников, зажимных и подающих цанг и других деталей, к которым предъявляются требования повышенной износостойкости и работающих без ударных нагрузок; проволоки квадратного, прямоугольного и трапециевидного сечений, предназначенной для изготовления пружинных шайб; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин); плющеной термообработанной ленты толщиной 0,15-2,00 мм для изготовления пружинящих деталей и пружин, за исключением заводных; измерительных лент.
Сталь 65ГА

Сталь 65С2ВА
* Применяется для изготовления особо ответственных и высоконагруженных пружин и рессор; тонких пружин и измерительных лент.
Сталь 68А
* Применяется для производства термически обработанной проволоки диаметром 1,2-5,5 мм, предназначенной для изготовления пружин.
Сталь 68ГА
* Применяется для производства термически обработанной проволоки диаметром 1,2-5,5 мм, предназначенной для изготовления пружин.
Сталь 70
* Применяется для производства рессор, пружин и других деталей, от которых требуются повышенные прочностные и упругие свойства, а также износостойкость; проволоки квадратного, прямоугольного и трапециевидного сечений, предназначенной для изготовления пружинных шайб; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин); холоднокатаной термообработанной ленты толщиной 0,05-1,30 мм и плющеной термообработанной ленты толщиной 0,15-2,00 мм для изготовления пружинящих деталей и пружин, за исключением заводных.
Сталь 70Г
* Применяется для изготовления пружин различных машин и механизмов различных отраслей промышленности; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин); измерительных лент.
Сталь 70Г2
* Применяется для изготовления пружин различных машин и механизмов различных отраслей промышленности; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин).
Сталь 70С2ХА (ЭИ142)
* Применяется для изготовления пружин часовых механизмов; крупных пружин ответственного назначения; холоднокатаной термообработанной ленты толщиной 0,05-1,30 мм и плющеной термообработанной ленты толщиной 0,15-2,00 мм для изготовления пружинящих деталей и пружин, за исключением заводных; измерительных лент.
Сталь 70С3А
* Применяется для производства тяжелонагруженных пружин ответственного и особоответственного назначения.
Сталь 75
* Применяется для изготовления круглых и плоских пружин различных размеров, пружин клапанов двигателя автомобиля, пружин амортизаторов, рессор, замковых шайб, дисков сцепления, эксцентриков, шпинделей, регулировочных прокладок и других деталей, работающих в условиях трения и под действием статических и вибрационных нагрузок; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин).
Сталь 80
* Применяется для производства круглых и плоских пружин и деталей, работающих в условиях трения и под действием вибрационных нагрузок; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин).
Сталь 85
* Применяется для изготовления пружин, фрикционных дисков и других деталей, к которым предъявляются требования высоких прочностных и упругих свойств и износостойкости; ножей землеройных машин (бульдозеров, скреперов, грейдеров и автогрейдеров, а также для ножей бульдозерного и грейдерного оборудования экскаваторов, катков и других землеройных машин); пружин и измерительных лент.

Стали, предназначенные для изготовления пружин и рессор, должны допускать большие упругие деформации и иметь пластические свойства, обеспечивающие работу витых и других пружин без поломок при перегрузках,должны противостоять циклическим нагрузкам (особенно колебательного характера). В соответствии с этим стали для пружин и рессор должны обладать высоким пределом упругости и пределом выносливости, достаточной вязкостью и пластичностью. Предел текучести углеродистых пружинных сталей после окончательной термической обработки должен превышать 800 Н/мм2, а легированных –1000 Н/мм2. Показатели пластичности должны быть δ≥5 % и ψ≥20%. Углеродистые стали для пружин и рессор имеют низкую коррозионную стойкость и невысокую релаксационную стойкость. Малая прокаливаемость этих сталей ограничивает их применение – обычно только для изготовления пружин и рессор небольшого сечения. Легированные стали обладают более высокими прочностными свойствами, повышенной вязкостью и сопротивлением хрупкому разрушению, более высокой релаксационной стойкостью, возможностями закалки в масле и даже на воздухе. Эти стали более предпочтительны для изготовления пружин и рессор. Механические свойства (минимальные) рессорно-пружинных сталей предусмотрены ГОСТ 14959-79. Это стали: 65, 70,75, 85, 65Г,65Г2, 70Г, 60С2,48,70СЗА, 50ХГ, 55КГР, 60ГСА, 50ХГФА и др. Режимы термической обработки: температура закалки в масле 820…870°С, температура отпуска 420…480°С.

Марки стали

Назначения

Плоские пружины прямоугольного сечения толщиной 3…12 мм (сталь 65); пружины из проволоки диаметром 0,14…8 мм с холодной навивкой; пружины различных размеров с последующим отпуском при 300 °С (стали 70, 75 и 85); рессоры, пружины и бандажи локомотивов (сталь70)

Плоские и круглые пружины, рессоры, пружинные кольца, шайбы, гровера и другие детали пружинного типа, от которых требуются высокие упругие свойства и повышенное сопротивление изнашиванию

Рессоры толщиной 3…14 мм

Рессоры, подвески, натяжные пружины; детали, рабо- тающие на переменный изгиб. Обычно применяют полосовую сталь толщиной 3…18 мм и желобчатую сталь (для рессор) толщиной 7…13 мм. Механические свойства ее в продольном и поперечном направлениях различны. Сталь склонна к обезуглероживанию

Рессоры из полосовой стали толщиной. 3…16 мм;, пру-жины из полосовой стали толщиной 3…18 мм и из пру-жинной ленты толщиной 0,08…3 мм; витые пружины из проволоки диаметром 3…12 мм. Сталь склонна к обезуглероживанию, устойчива против роста зерна, обладает глубокой прокаливаемостью. Максимальная рабочая температура +250 °С

Для изготовления рессорной полосы толщиной 3…16мм. Легирование бором повышает предел упругости и модуль упругости стали

32.Износостойкие стали. Краткая характеристика . Марки

Износостойкие стали применяются (используются) для изготовления деталей машин, работающих в условиях трения:

Шарикоподшипниковые,

Графитизированные,

Высокомарганцовистые.

Шарикоподшипниковые стали (ШХ15, ШХ20) применяют для изготовления шариков и роликов подшипников.

По химическому составу (ГОСТ 801-78) и структуре эти стали относятся к классу инструментальных сталей.

Графитизированную сталь (высокоуглеродистую, содержащую 1,5 - 2% С и до 2% Cr) используют для изготовления поршневых колец, поршней, коленчатых валов и других фасонных отливок, работающих в условиях трения.

Графитизированная сталь содержит в структуре ферритоцементитную смесь и графит.

Марки графитизированной стали У16 (ЭИ 336)

Количество графита может значительно меняться в зависимости от режима термической обработки и содержания углерода.

Графитизированная сталь после закалки сочетает свойства закаленной стали и серого чугуна.

Графит в такой стали играет роль смазки.

Высокомарганцовистую cталь Г13Л, содержащую 1,2% С и 13% Мn, применяют для изготовления железнодорожных крестовин, звеньев гусениц и т. п.

Эта сталь обладает максимальной износостойкостью, когда имеет однофазную структуру аустенита, что обеспечивается закалкой (1000-1100°С) при охлаждении на воздухе.

Закаленная сталь имеет низкую твердость (НВ 200), после сильного наклепа ее твердость повышается до НВ 600.

Шарикоподшипниковые стали

Стали для изготовления деталей подшипников (колец, шариков, роликов) считаются конструкционными, но по составу и свойствам относятся к инструментальным. Наибольшее применение имеет высокоуглеродистая хромистая сталь ШХ15. Заэвтектоидное содержание в ней углерода (0,95%) и хрома (1,3…1,65%) обеспечивает получение после закалки высокой равномерной твердости, устойчивости против истирания и достаточной вязкости. На качество стали и срок службы подшипника вредно влияют карбидные ликвации, полосчатость и сетка. На физическую однородность стали 50 вредно влияют неметаллические (сульфидные и оксидные) и газовые включения, макро- и микропористость. Сталь ШХ15 применяют для деталей небольших сечений. Для деталей более крупных подшипников в целях улучшения их прокаливаемости применяют хромокремнемарганцевые стали ШХ15СГ и ШХ20СГ.

Для изготовления деталей крупногабаритных подшипников для прокатных станов, железнодорожного транспорта, работающих в тяжелых условиях при больших ударных нагрузках, применяют цементируемую сталь 20Х2Н4А.

33. Коррозионно-стойкие (нержавеющие ) стали . Углеродистые и низколегированные стали подвержены коррозии, т. е. разрушаются от химического воздействия окружающей среды. По механизму протекания процесса различают два вида коррозии: химическую и электрохимическую. Явления, возникающие при электрохимической коррозии, аналогичны процессам в гальваническом элементе. Стали, устойчивые к электрохимической коррозии, называют коррозионно-стойкими (нержавеющими). Антикоррозионными свойствами сталь обладает в том случае, если она легирована большим количеством хрома или хрома и никеля.

Хромистые коррозионно-стойкие стали . Содержание хрома в стали должно быть не менее 12%. При меньшем содержании хрома сталь не способно сопротивляться коррозии, так как ее электродный потенциал становится отрицательным. Широко применяют стали марок 12X13, 40X13, 12X17,08Х17Т.

Хромоникелевые коррозионно-стойкие стали . Эти стали содержат большое количество хрома и никеля, мало углерода и относятся к аустенитному классу. Кроме аустенита в этих сталях находятся карбиды хрома. Для получения однофазной структуры аустенита сталь, например марки 12Х18Н9, закаливают в воде с температуры 1100…1150 °С. При этом достигается наиболее высокая коррозионная стойкость, но прочность сравнительно невысока. Для повышения прочности сталь подвергают пластической деформации в холодном состоянии.

Хромоникелевые стали аустенитного класса имеют большую коррозионную стойкость, чем хромистые, и их широко применяют в химической, нефтяной и пищевой промышленности, автостроении, транспортном машиностроении, а также в строительстве.

Жаропрочные стали и сплавы. К ним относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью. На уменьшение прочности стали влияет не только само повышение температуры, но и длительность действия приложенной нагрузки. В последнем случае под действием постоянной нагрузки сталь «ползет», поэтому данное явление названо ползучестью. Для углеродистых и легированных конструкционных сталей ползучесть наблюдается при температурах выше 350°С. Факторами, способствующими повышению жаропрочности, являются:

высокая температура плавления основного металла; наличие в сплаве твердого раствора и мелкодисперсных частиц упрочняющей фазы; пластическая деформация, вызывающая наклеп; высокая температура рекристаллизации; рациональное легирование; термическая и термомеханическая обработка; введение в жаропрочные стали в долях процента таких элементов, как В, Се, Nb, Zn.

Жаропрочные стали и сплавы классифицируют по основному признаку –температуре эксплуатации. Для работы при температурах до 350…400°С применяют обычные конструкционные стали (углеродистые и низколегированные). Для работы при температуре 400…550°С применяют легированные стали перлитного класса, например 15ХМ, 12Х11МФ. Для этих сталей основной характеристикой является предел ползучести, так как они предназначены главным образом для изготовления деталей котлов и турбин, напримертруб паропроводов и пароперегревателей, нагруженных сравнительно мало,но работающих весьма длительное время (до 100 000 ч). Эти стали содержат мало хрома и поэтому обладают невысокой жаростойкостью (до 550…600°С). Для работы при температуре 500…600°С применяют стали мартенситного класса: высокохромистые, например 15Х11МФ для лопаток паровых турбин; хромокремнистые (называемые сильхромами), например 40Х9С2 для клапанов мототоров; сложнолегированные, например 20Х12ВНМФ для дисков, роторов, валов, турбин. Для работы при температуре 600…750°С применяют стали аустенитного класса, разделяемые на неупрочняемые (нестареющие), например сталь 09Х14Н16В, предназначаемая для труб пароперегревателей и трубопроводов установок сверхвысокого давления, и упрочняемые (стареющие) сложнолегированные стали, например сталь 45Х4Н14В2М, применяемая для клапанов моторов, деталей трубопроводов, и сталь 40Х15Н7Г7Ф2МС для лопаток газовых турбин. Жаростойкость сталей аустенитного класса 800…850 °С. Для работы при 800…1100°С применяют жаропрочные сплавы на никелевой основе, например ХН77ТЮР, ХН55ВМТФКЮ для лопаток турбин. Эти сплавы стареющие и подвергаются такой же термической обработке (закалке и старению), как и стареющие стали аустенитного класса. Жаростойкость сплавов на никелевой основе до 1200°С.

B зависимости от основной структуры, получаемой при охлаждении стали на воздухе после высокотемпературного нагрева, коррозионностойкие и жаропрочные стали делят на шесть классов. К мартенситному классу относятся стали с основной структурой мартенсита. Они содержат до 17% Cr и небольшие добавки вольфрама, молибдена, ванадия и никеля. Это стали 15X5, 20X13, 15ХМ, 20ХМ и др. К мартенситно-ферритному классу относятся стали, содержащие в структуре, помимо мартенсита, не менее 10 % феррита. Эти стали содержат 11…17% Cr и небольшое количество других элементов. Содержание углерода не превышает 0,15%. Их термическая обработка заключается в закалке с отпуском либо в нормализации с отпуском. Это стали 12X13,14Х17Н2, 15Х12ВНМФ, 18Х12ВМБФР. К ферритному классу относятся стали, имеющие структуру феррита. Они содержат малое количество углерода, до 30% Cr и небольшие добавки титана, ниобия и других элементов. Стали: 08X13, 12Х17Т, 15Х25Т, 15X28. К аустенитно-ферритному классу относятся стали, имеющие структуру аустенита и мартенсита, количество которых можно менять в широких пределах. Стали: 20Х13Н4Г9, 09Х15Н8Ю, 07Х16Н6, 09Х17Н7ЮЖ, 08Х17Н5М3. К аустенитно-ферритному классу относятся также стали, имеющие структуру аустенита и феррита (феррита более 10 %). Особую группу сталей аустенитного класса составляют экономно легированные никелем и безникелевые стали.

Общие сведения. Пружины и рессоры испытывают в работе многократные знакопеременные нагрузки и после снятия нагрузки должны полностью восстанавливать свои первоначальные размеры. В связи с такими условиями работы металл, применяемый для изготовления пружин и рессор, должен обладать, кроме необходимой прочности в условиях статического, динамического или циклического нагружений, достаточно хорошей пластичности, высокими пределами упругости и выносливости и высокой релаксационной стойкостью, а при работе в агрессивных средах (атмосфере пара, морской воде и др.) должен быть также и коррозион-ностойким.

Не менее важны для металла пружин и рессор также технологические свойства - малая склонность к росту зерна и обезуглероживанию в процессе термической обработки, глубокая прокаливаемость, низкая критическая скорость закалки, малая чувствительность к отпускной хрупкости.

На качество пружин и рессор влияет состояние поверхности прутков, проволоки и полос. Наличие наружных дефектов (трещин, закатов, плен, волосовин, раковин, заусенцев, вдавленной окалины и др.), а также обезуглероженного слоя снижает упругие и циклические свойства металла. Поэтому наружные дефекты на поверхности прутков и полос должны быть удалены зачисткой или шлифованием, а глубина обезуглероженного слоя не должна превышать определенной нормы, установленной ГОСТом на рессорно-пружинную сталь.

Высокие свойства (максимальные пределы упругости и выносливости) пружины и рессоры имеют при твердости HRC 40-45 (структура-троостит), которая достигается после закалки (с равномерным и полным мартен ситным превращением по всему объему металла) и среднего отпуска при 400-500° С (в зависимости от стали).

Для изготовления пружин применяют углеродистые и легированные стали, а для приборов - сплавы цветных металлов, главным образом бериллиевую бронзу. Рессоры изготовляют только из легированных сталей.

Пружины и рессорные листы упрочняют следующими способами: 1) холодной пластической деформацией с последующим низкотемпературным нагревом (отпуском, старением); 2) закалкой с последующим отпуском (упрочнение в результате мартенситного превращения); 3) закалкой с последующим старением (упрочнение в результате дисперсионного твердения).

Упрочнение холодной пластической деформацией. Для изготовления средних и мелких витых пружин широко применяют патентированную проволоку (диаметром до 8 мм), изготовляемую из среднеуглеродистых сталей с содержанием марганца 0,3-0,6% и сталей 65Г и 70Г с содержанием марганца 0,7-1,0%, а также из углеродистых инструментальных сталей. После навивки в холодном состоянии пружины подвергают низкому отпуску (175- 250° С, выдержка 15-20 мин в зависимости от диаметра проволоки) для снятия напряжений, повышения пределов упругости и выносливости, релаксационной стойкости и обеспечения стабильности размеров пружины.

Вместо патентирования экономически более выгодно применять метод деформационного упрочнения нормализованной стали. Данный метод, разработанный на Горьковском автомобильном заводе, заключается в следующем. Проволоку, прутки, полосы из сталей 45, 65Г, 50ХГ подвергают нормализации, а затем холодной пластической деформации волочением или прокаткой со степенью деформации 40-60%. Из полученного полуфабриката навивкой, штамповкой или вырубкой изготовляют пластинчатые и витые пружины, рессорные листы, которые подвергают нагреву при 280-300° С в течение 20-40 мин.

данного метода является также то, что обеспечиваются размеры и форма упругих элементов, что особенно важно для тонких пластинчатых пружин, сильно деформирующихся при закалке. Для устранения коробления таких пружин необходимо применять при отпуске специальные штампы.

Упрочнение закалкой с последующим отпуском. Для изготовления пружин, упрочняемых термической обработкой (закалкой и отпуском), применяют углеродистые (65, 75) и легированные (60С2А, 50ХФА, 60С2Н2А и др.) стали, для рессор - только легированные стали, для пружин, работающих в агрессивных средах,- нержавеющие стали 30X13, 40X13, 12Х18Н10Т и др.

Углеродистые стали в связи с их малой прокаливаемостью применяют для изготовления пружин из проволоки диаметром до 6 мм. Преимущество кремнистой стали по сравнению с углеродистой - ее повышенная прокаливаемость и более высокие прочность и пластичность. Недостатком этой стали является повышенная склонность к образованию поверхностных дефектов при горячей обработке, обезуглероживанию и графитизации. В результате обезуглероживания наружной поверхности пружин или рессор резко снижается их сопротивляемость длительным нагрузкам. Поэтому нагрев пружин и рессор необходимо проводить с предохранением от обезуглероживания или (для устранения вредного влияния обезуглероженного слоя) подвергать их после термической обработки обдувке дробью.

Широкое применение для изготовления рессор автомашин и пружин подвижного состава железнодорожного транспорта имеют кремнистые стали 55С2 (А) и 60С2 (А). Сталь 60С2 (А) применяют также для изготовления пружин, работающих при температурах до 250° С. Сталь 70СЗА обладает высокими механическими свойствами, но склонна к графитизации.

Марганцевая сталь (65Г) по сравнению с кремнистой сталью обладает некоторыми особенностями, к которым относятся получение менее шероховатой поверхности при горячей обработке, большая прокаливаемость и меньшая склонность к обезуглероживанию. Недостатками марганцевой стали являются повышенная чувствительность к перегреву, образованию закалочных трещин, склонность к отпускной хрупкости; применяют эту сталь для пружин механизмов и машин.

Детали из стали 55ГС сечением до 25 мм имеют сквозную закалку, а поэтому ее применяют для изготовления рессор толщиной до 10 мм, цилиндрических пружин с диаметром прутка до 25 мм и буферных пружин; эта сталь малосклонна к обезуглероживанию и отпускной хрупкости.

Хромомарганцевая сталь (50ХГ (А)) обладает глубокой прокаливаемостью, высокой прочностью и относительно малой чувствительностью к перегреву; ее применяют для изготовления пружин и рессор большого сечения; сталь хорошо закаливается в масле; недостатком этой стали является склонность к отпускной хрупкости.

Небольшая присадка к хромистой стали ванадия положительно влияет на структуру и пластичность стали, а также уменьшает ее склонность к перегреву, вследствие чего значительно облегчается термическая обработка; поэтому хромованадиевая (50ХФА) и хромомарганцеванадиевая (50ХГФА) стали хорошо закаливаются в масле и малосклонны к росту зерна. Применяют эти стали для изготовления пружин особо ответственного назначения, а также рессор легковых автомобилей.

Стали 60С2ХФА, 65С2ВА и 60С2Н2А используют для крупных пружин ответственного назначения. Детали из этих сталей малосклонны к росту зерна и прокаливаются в сечениях до 50 мм. Особенно высокими качествами обладает никелькремнистая сталь 60С2Н2А, легко отжигающаяся на структуру зернистого перлита, имеющая высокую пластичность, не подкаливающаяся при охлаждении на воздухе после горячей прокатки.

Нержавеющие стали применяют для изготовления пружин, работающих в коррозионной среде и повышенных (до 400° С) температурах. Пружины из высокохромистых нержавеющих сталей мартенситного класса (30X13, 40X13 и др.) закаливают от температуры 1000-1050° С в масле (пружины из стали 40X13 можно охлаждать также и на воздухе); структура после закалки - мартенсит. Отпуск после закалки проводят в зависимости от условий работы пружин: при 550-500° С для пружин, работающих при повышенных температурах, и при 300-350° С - для пружин, работающих при температуре 20° С (при более высокой температуре отпуска понижается стойкость к коррозии под напряжением). Очень высокая прокаливаемость этих сталей позволяет изготовлять из них пружины больших сечений.

Пружины из хромоникелевых сталей аустенитного класса (12Х18Н10Т и др.), упрочняемые холодной пластической деформацией, после навивки подвергают только отпуску при 450- 500° С с выдержкой в течение 20-30 мин.

Для повышения коррозионной стойкости и стабильности пружины из нержавеющих сталей после всех операций технологического процесса подвергают полированию (лучше электролитическому) до полного осветления поверхности. Необходимо учитывать, что при полировании диаметр проволоки уменьшается на 3-10%, что приводит к снижению силовых характеристик пружин.

Цилиндрические пружины нагревают в горизонтальном положении. Для предупреждения коробления при нагреве на поду печи располагают швеллерные балки, на которые укладывают пружины. Для закалки пружин сжатия применяют приспособление, показанное на рис. 157, представляющее собой стальной стакан (внутренний диаметр которого на 0,3-0,4 мм больше наружного диаметра пружины, а высота на 10-12 мм больше высоты пружины) с отверстием в дне, равным среднему диаметру пружины. В приспособление помещают пружину и загружают его в печь. После нагрева до заданной температуры и выдержки приспособление вместе с пружиной вынимают из печи и охлаждают в масле (в горизонтальном положении при непрерывном покачивании). Закаленную пружину выталкивают из приспособления, нажимая на нее со стороны отверстия в стакане.

Коробление пружины, полученное при закалке (рис. 158, а), можно устранить при отпуске. Закаленную пружину надевают на оправку и зажимают клином (рис. 158, б). В таком состоянии осуществляют отпуск пружины. После отпуска на оправке коробление пружины, полученное при закалке, устраняется (рис. 158, в).

Для получения необходимой твердости и правильной формы тонкие пластинчатые пружины для устранения возникшего при закалке коробления подвергают отпуску в штампах на прессе с электроподогревом. Пресс имеет два штампа - нижний / и верхний 2 (рис. 159). Внутри штампов находятся стальные диски 3 с пазами. Нихромовые нагревательные элементы с жаростойкой изоляцией размещены в пазах дисков 3. Концы 4 нагревателей выведены из штампов к щиту управления. Для теплостойкости штампы заключены в кожухи с асбестовой теплоизоляцией 5. Нижний штамп 1 неподвижный. Верхний штамп 2 с помощью пневмоцилиндра б, управляемого краном 7, может перемещаться в осевом направлении. Контроль температуры осуществляется термопарой 8. Закаленные пружины помещают на нижний штамп /, прижимают верхним штампом 2 и выдерживают в течение нескольких минут при температуре отпуска.

Для изготовления автомобильных рессор применяют стали 60С2(А),50ХГ(А),50ХФА,50ХГФАидр. Рессорные листы нарезают в холодном состоянии, затем в них пробивают отверстия, оттягивают концы и в горячем состоянии загибают ушки. Термическую обработку рессорных листов, например из стали 50ХГФА, проводят по следующему режиму. Листы загружают в закалочную газовую конвейерную печь (температура I зоны 600--700° С, II зоны 800-850° С и III зоны 850-880° С). Выдержку дают

из расчета 1,2-1,5 мин на 1 мм сечения. После нагрева рессорные листы помещают в гибоч-но-закалочную машину, в которой производится гибка и закалка с охлаждением в циркулирующем масле (температура масла 40-60° С).

После закалки рессорные листы подвергают отпуску в газовой конвейерной печи при 550-600° С с выдержкой 40- 45 мин. Рессорные листы укладывают на конвейер печи на ребро. После отпуска рессорные листы поступают на конвейер охлаждающего бака. Быстрое охлаждение водой после отпуска препятствует возникновению отпускной хрупкости, не нарушает потока и улучшает условия работы в цехе. После отпуска рессорные листы подвергают дробеструйной обработке, что значительно повышает их предел выносливости. Остаточные напряжения сжатия наружных слоев, вызванные обдувкой дробью, уменьшают напряжения растяжения в наружных волокнах, увеличивая долговечность

рессорного листа.

В процессе термической обработки контролируют: а) твердость после закалки (одного комплекта через каждые 2 ч работы) (HRC 50-60); б) прилегание листов рессоры в сборе (через каждые 2 ч работы); в) твердость после отпуска (HRC 40-45).

Для проверки результатов термической обработки иногда рессоры выборочно подвергают испытанию на выносливость.

Кроме обычной закалки эффективны индукционный нагрев пружин и рессор, изотермическая закалка и особенно термомеханическая обработка.

Упрочнение закалкой с последующим старением. Материалом, упрочняемым закалкой и старением, является бериллиевая бронза. Изготовленные из ленты (штамповкой, вытяжкой, гибкой и т. п.), прутков (обработкой на станках), проволоки (путем навивки) детали перед закалкой обезжиривают в бензине или ацетоне, промывают в холодной и кипящей воде и сушат теплым воздухом или в термостате при температуре не выше 120° С. Подготовленные детали помещают в коробки, засыпают древесным углем, нагревают в печи до 760-800° С с выдержкой 8-15 мин, охлаждают в холодной воде и затем сушат.

Закаленные детали подвергают старению (дисперсионному твердению) при 260-400° С (в зависимости от требуемых свойств) с выдержкой после нагрева от 1 до 4 ч и охлаждением на воздухе.

Во избежание коробления старение деталей проводят в специальных приспособлениях. После термической обработки детали контролируют. Твердость в зависимости от условий работы деталей НV 200-400.

Закалке подвергают также заготовки с последующим изготовлением из них деталей по следующему технологическому процессу: отрезка или вырубка заготовок; обезжиривание, промывка, сушка; закалка; полирование заготовок (при необходимости); изготовление деталей; обезжиривание, промывка и сушка деталей, старение; контроль.