Как найти абсолютную погрешность измерения. Погрешности измерений. Абсолютная, относительная погрешности. Основная, дополнительная погрешности. Случайные, систематические погрешности

Абсолютной погрешностью приближенного числа называется модуль разности между этим числом и его точным значением. . Отсюда следует, что заключено в пределах или .

Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет |1300 - 1284|=16. При округлении до 1280 абсолютная погрешность составляет |1280 - 1284| = 4.
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности …
приближенного числа к модулю значения числа .
Пример 2 . В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет |200 - 197| = 3. Относительная погрешность равна 3/|197| или 1,5 %.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Пример 3. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая - 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превосходит 50/3600 ≈1,4%.

В примере 3 за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность – 1,4 %.
Абсолютная погрешность обозначается греческой буквой Δ («дельта») или D a ; относительная погрешность - греческой буквой δ («дельта малая»). Если приближенное число обозначить буквой А, то δ = Δ/|А|.

Значащей цифрой приближенного числа А называется всякая цифра в его десятичном представлении, отличная от нуля, и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда

Пример. А= 0,002080. Здесь только первые три нуля не являются значащими.

n первых значащих цифр приближенного числа А являются верными , если абсолютная погрешность этого числа не превышает половины разряда, выражаемого n – й значащей цифрой, считая слева направо. Цифры, не являющиеся верными, называются сомнительными.

Пример. Если в числе a = 0,03450 все цифры верные, то .

Правила приближенных вычислений
понятие определение пример или примечание
Приближенные вычисления Вычисления, производимые над числами, которые известны нам с определённой точностью, например, полученными в эксперименте. Выполняя вычисления, всегда необходимо помнить о той точности, которую нужно или которую можно получить. Недопустимо вести вычисления с большой точностью, если данные задачи не допускают или не требуют этого. И наоборот.
Погрешности Разница между точным числом а и его приближенным значением А называется погрешностью данного приближенного числа. Если известно, что | а — А | < D, то величина D называется абсолютной погрешностью приближенной величины А. Отношение D /|А| = δ называется относительной погрешностью ; последнюю часто выражают в процентах. 3,14 является приближенным значением числа а , погрешность его равна 0,00159…, абсолютную погрешность можно считать равной 0,0016, а относительную погрешность δ равной 0.0016/3.14 = 0,00051 = 0,051%.
Значащие цифры все цифры числа, начиная с 1-й слева, отличной от нуля, до последней, за правильность которой можно ручаться. Приближенные числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52438 равна 100, то это число должно быть записано, например, в виде 524 . 10 2 или 0,524 . 10 5 . Оценить погрешность приближенного числа можно, указав, сколько верных значащих цифр оно содержит. Если число А = 47,542 получено в результате действий над приближенными числами и известно, что δ = 0,1%, то a имеет 3 верных знака, т.е. А = 47,5
Округление Если приближенное число содержит лишние (или неверные) знаки, то его следует округлить. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причем если первая отбрасываемая цифра больше или равна 5 , то последняя сохраняемая цифра увеличивается на единицу.
Действия над приближенными числами Результат действий над приближёнными числами представляет собой также приближённое число. Число значащих цифр результата можно вычислить при помощи следующих правил: 1. При сложении и вычитании приближённых чисел в результате следует сохранять столько десятичных знаков, сколько их в приближённом данном с наименьшим числом десятичных знаков. 2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближённое данное с наименьшим числом значащих цифр.

Результат действий с приближенными числами есть тоже приближенное число. При этом неточными могут оказаться и те цифры, которые получены действиями над точными цифрами данных чисел.

Пример 5. Перемножаются приближенные числа 60,2 и 80,1. Известно, что все выписанные цифры верны, так что истинные величины могут отличаться от приближенных лишь сотыми, тысячными и т. д. долями. В произведении получаем 4822,02. Здесь могут быть неверными не только цифры сотых и десятых, но и цифры единиц. Пусть, например, сомножители получены округлением точных чисел 60,25 и 80,14. Тогда точное произведение будет 4828,435, так что цифра единиц в приближенном произведении (2) отличается от точной цифры (8) на 6 единиц.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов еще до выполнения действий;

2) брать данные с надлежащей степенью точности, достаточной, чтобы обеспечить требуемую точность результата, но не слишком большой, чтобы избавить вычислителя от бесполезных расчетов;

3) рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результата.

Измерения многих величин, встречающихся в природе, не может быть точным. Измерение дает число, выражающее величину с той или иной степенью точности (измерение длины с точностью до 0,01 см, вычисление значения функции в точке с точностью до и т.д.), то есть приближенно, с некоторой погрешностью. Погрешность может быть задана наперед, или, наоборот, ее требуется найти.

Теория погрешностей имеет объектом своего изучения в основном приближенные числа. При вычислениях вместо обычно используют приближенные числа: (если точность не особо важна), (если точность важна). Как проводить вычисления с приближенными числами, определять их погрешности – этим занимается теория приближенных вычислений (теория погрешностей).

В дальнейшем точные числа будем обозначать заглавными буквами , а соответствующие им приближенные – строчными

Погрешности, возникающие на том или ином этапе решения задачи можно условно разделить на три типа:

1) Погрешность задачи. Этот тип погрешности возникает при построении математической модели явления. Далеко не всегда оказывается возможным учесть все факторы и степень их влияния на окончательный результат. То есть, математическая модель объекта не является его точным образом, не является точным его описание. Такая погрешность является неустранимой.

2) Погрешность метода. Эта погрешность возникает в результате подмены исходной математической модели более упрощенной, например, в некоторых задачах корреляционного анализа приемлемой является линейная модель. Такая погрешность является устранимой, так как на этапах вычисления она может свестись к сколь угодно малой величине.

3) Вычислительная («машинная») погрешность. Возникает при выполнении арифметических операций компьютером.

Определение 1.1. Пусть – точное значение величины (числа), – приближенное значение той же величины (). Истинной абсолютной погрешностью приближенного числа называется модуль разности точного и приближенного значений:

. (1.1)

Пусть, например, =1/3. При вычислении на МК дали результат деления 1 на 3 как приближенное число =0,33. Тогда .

Однако в действительности в большинстве случаев точное значение величины не известно, а значит, нельзя применять (1.1), то есть нельзя найти истинную абсолютную погрешностью. Поэтому вводят другую величину, служащей некоторой оценкой (верхней границей для ).

Определение 1.2. Предельной абсолютной погрешностью приближенного числа , представляющее неизвестное точное число , называется такое возможно меньшее число, которого не превосходит истинная абсолютная погрешность , то есть . (1.2)

Для приближенного числа величин , удовлетворяющих неравенству (1.2), существует бесконечно много, но самым ценным из них будет наименьшее из всех найденных. Из (1.2) на основании определения модуля имеем , или сокращенно в виде равенства


. (1.3)

Равенство (1.3) определяет границы, в которых находится неизвестное точное число (говорят, что приближенное число выражает точное с предельной абсолютной погрешностью). Нетрудно видеть, что чем меньше , тем точнее определяются эти границы.

Например, если измерения некоторой величины дали результат см, при этом точность этих измерений не превосходила 1 см, то истинная (точная) длина см.

Пример 1.1. Дано число . Найти предельную абсолютную погрешность числа числом .

Решение: Из равенства (1.3) для числа ( =1,243; =0,0005) имеем двойное неравенство , то есть

Тогда задача ставится так: найти для числа предельную абсолютную погрешность , удовлетворяющую неравенству . Учитывая условие (*), получим (в (*) вычитаем из каждой части неравенства)

Так как в нашем случае , то , откуда =0,0035.

Ответ: =0,0035.

Предельная абсолютная погрешность часто плохо дает представление о точности измерений или вычислений. Например, =1 м при измерениях длины здания укажет, что они проводились не точно, а та же погрешность =1 м при измерениях расстояния между городами дает очень качественную оценку. Поэтому вводят другую величину.

Определение 1.3. Истинной относительной погрешностью числа , являющегося приближенным значением точного числа , называется отношение истинной абсолютной погрешности числа к модулю самого числа :

. (1.4)

Например, если соответственно точное и приближенное значения, то

Однако формула (1.4) неприменима, если не известно точное значение числа. Поэтому по аналогии с предельной абсолютной погрешностью вводят предельную относительную погрешность.

Определение 1.4. Предельной относительной погрешностью числа , являющегося приближенным значением неизвестного точного числа , называется возможно меньшее число , которого не превосходит истинная относительная погрешность , то есть

. (1.5)

Из неравенства (1.2) имеем ; откуда, учитывая (1.5)

Формула (1.6) имеет большую практическую применимость по сравнению с (1.5), так как в ней не участвует точное значение. Учитывая (1.6), (1.3), можно найти границы, в которых заключается точное значение неизвестной величины.

Инструкция

В первую очередь, проведите несколько измерений прибором одной и той же величины, чтобы иметь возможность действительное значение. Чем больше будет проведено измерений, тем точнее будет результат. Например, взвесьте на электронных весах. Допустим, вы получили результаты 0,106, 0,111, 0,098 кг.

Теперь посчитайте действительное значение величины (действительное, поскольку истинное найти невозможно). Для этого сложите полученные результаты и разделите их на количество измерений, то есть найдите среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

Источники:

  • как найти погрешность измерений

Неотъемлемой частью любого измерения является некоторая погрешность . Она представляет собой качественную характеристику точности проведенного исследования. По форме представления она может быть абсолютной и относительной.

Вам понадобится

  • - калькулятор.

Инструкция

Вторые возникают от влияния причин, и случайный характер. К ним можно отнести неправильное округление при подсчете показаний и влияние . Если такие ошибки значительно меньше, чем деления шкалы этого прибора измерения, то в качестве абсолютной погрешности целесообразно взять половину деления.

Промах или грубая погрешность представляет собой результат наблюдения, который резко отличается от всех остальных.

Абсолютная погрешность приближенного числового значения – это разность между результатом, в ходе измерения и истинным значением измеряемой величины. Истинное или действительное значение отражает исследуемую физическую величину. Эта погрешность является самой простой количественной мерой ошибки. Её можно рассчитать по следующей формуле: ∆Х = Хисл - Хист. Она может принимать положительное и отрицательное значение. Для большего понимания рассмотрим . В школе 1205 учащихся, при округлении до 1200 абсолютная погрешность равняется: ∆ = 1200 - 1205 = 5.

Существуют определенные расчета погрешности величин. Во-первых, абсолютная погрешность суммы двух независимых величин равна сумме их абсолютных погрешностей: ∆(Х+Y) = ∆Х+∆Y. Аналогичный подход применим для разности двух погрешностей. Можно воспользоваться формулой: ∆(Х-Y) = ∆Х+∆Y.

Источники:

  • как определить абсолютную погрешность

Измерения физических величин всегда сопровождаются той или иной погрешностью . Она представляет собой отклонение результатов измерения от истинного значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

Погрешности могут возникнуть в результате влияния различных факторов. Среди них можно выделить несовершенство средств или методов измерения, неточности при их изготовлении, несоблюдение специальных условий при проведении исследования.

Существует несколько классификаций . По форме представления они могут быть абсолютными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:∆х = хисл- хист. Вторые определяются отношением абсолютных погрешностей к величине истинного значения показателя.Формула расчета имеет вид:δ = ∆х/хист. Измеряется в процентах или долях.

Приведенная погрешность измерительного прибора находится как отношение ∆х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

По условиям возникновения различают основные и дополнительные. Если измерения проводились в нормальных условиях, то возникает первый вид. Отклонения, обусловленные выходом значений за пределы нормальных, является дополнительной. Для ее оценки в документации обычно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

Также погрешности физических измерений подразделяются на систематические, случайные и грубые. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые возникают от влияния причин, и характер. Промах представляет собой результат наблюдения, который резко отличается от всех остальных.

В зависимости от характера измеряемой величины могут использоваться различные способы измерения погрешности. Первый из них это метод Корнфельда. Он основан на исчислении доверительного интервала в пределах от минимального до максимального результата. Погрешность в этом случае будет представлять собой половину разности этих результатов: ∆х = (хmax-xmin)/2. Еще один из способов – это расчет средней квадратической погрешности.

Измерения могут проводиться с разной степенью точности. При этом абсолютно точными не бывают даже прецизионные приборы. Абсолютная и относительная погрешности могут быть малы, но в реальности они есть практически всегда. Разница между приближенным и точным значениями некой величины называется абсолютной погрешностью . При этом отклонение может быть как в большую, так и в меньшую сторону.

Вам понадобится

  • - данные измерений;
  • - калькулятор.

Инструкция

Перед тем как рассчитывать абсолютную погрешность, примите за исходные данные несколько постулатов. Исключите грубые погрешности. Примите, что необходимые поправки уже вычислены и внесены в результат. Такой поправкой может быть, перенос исходной точки измерений.

Примите в качестве исходного положения то, что и учтены случайные погрешности. При этом подразумевается, что они меньше систематических, то есть абсолютной и относительной, характерных именно для этого прибора.

Случайные погрешности влияют на результат даже высокоточных измерений. Поэтому любой результат будет более или менее приближенным к абсолютному, но всегда будут расхождения. Определите этот интервал. Его можно выразить формулой (Xизм- ΔХ)≤Хизм ≤ (Хизм+ΔХ).

Определите величину, максимально приближенную к значению. В измерениях берется арифметическое, которое можно по формуле, на рисунке. Примите результат за истинную величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

Зная истинную величину , вы можете найти абсолютную погрешность, необходимо учитывать при всех последующих измерениях. Найдите величину Х1 – данные конкретного измерения. Определите разность ΔХ, отняв от большего меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание

Как правило, на практике абсолютно точное измерение провести не удается. Поэтому за эталонную величину принимается предельная погрешность. Она представляет собой максимальное значение модуля абсолютной погрешности.

Полезный совет

В практических измерениях за величину абсолютной погрешности обычно принимается половина наименьшей цены деления. При действиях с числами за абсолютную погрешность принимается половина значения цифры, которая находится в следующим за точными цифрами разряде.

Для определения класса точности прибора более важным бывает отношение абсолютной погрешности к результату измерений или к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методики. Точность зависит также от внимательности и состояния экспериментатора. Погрешности разделяются на абсолютные, относительные и приведенные.

Инструкция

Пусть однократное измерение величины дало результат x. Истинное значение обозначено за x0. Тогда абсолютная погрешность Δx=|x-x0|. Она оценивает абсолютную . Абсолютная погрешность складывается из трех составляющих: случайных погрешностей, систематических погрешностей и промахов. Обычно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

Истинное значение измеряемой величины в промежутке (x-Δx ; x+Δx). Короче это записывается как x0=x±Δx. Важно измерять x и Δx в одних и тех же единицах измерения и записывать в одном и том же формате , например, целая часть и три запятой. Итак, абсолютная погрешность дает границы интервала, в котором с некоторой вероятностью находится истинное значение.

Измерения прямые и косвенные. В прямых измерениях сразу замеряется искомая величина соответствующим прибором. Например, тела линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

Если результат представляет собой зависимость от трех непосредственно измеряемых величин, имеющих погрешности Δx1, Δx2, Δx3, то погрешность косвенного измерения ΔF=√[(Δx1 ∂F/∂x1)²+(Δx2 ∂F/∂x2)²+(Δx3 ∂F/∂x3)²]. Здесь ∂F/∂x(i) – частные производные от функции по каждой из непосредственно измеряемых величин.

Полезный совет

Промахи – это грубые неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методики эксперимента. Чтобы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и подробно расписывайте полученный результат.

Источники:

  • Методические указания к лабораторным работам по физике
  • как найти относительную ошибку

Результат любого измерения неизбежно сопровождается отклонением от истинного значения. Вычислить погрешность измерения можно несколькими способами в зависимости от ее типа, например, статистическими методами определения доверительного интервала, среднеквадратического отклонения и пр.

Как уже говорилось ранее, когда мы сравниваем точность измерения некоторой приближенной величины, мы используем абсолютную погрешность.

Понятие абсолютной погрешности

Абсолютная погрешность приближенного значения - это модуль разности точного значения и приближенного значения.
Абсолютную погрешность можно применять для сравнения точности приближений одинаковых величин, а если мы собираемся сравнивать точности приближения различных величин, тогда одной абсолютной погрешности недостаточно.

Например: Длина листа бумаги формата А4 равна (29.7 ± 0.1) см. А расстояние от Санкт-Петербурга до Москвы равно (650± 1) км. Абсолютная погрешность в первом случае не превосходит одного миллиметра, а во втором - одного километра. Вопрос, сравнить точность этих измерений.

Если вы думаете, что длина листа измерена точнее потому, что величина абсолютной погрешности не превышает 1 мм. То вы ошибаетесь. Напрямую сравнить эти величины нельзя. Проведем некоторые рассуждения.

При измерении длины листа абсолютная погрешность не превышает 0.1 см на 29.7 см, то есть в процентном соотношении это составляет 0.1/29.7 *100% = 0.33% измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до Москвы абсолютная погрешность не превышает 1 км на 650 км, что в процентном соотношении составляет 1/650 *100% = 0.15% измеряемой величины. Видим, что расстояние между городами измерено точнее, чем длинна листа формата А4.

Понятие относительной погрешности

Здесь для оценки качества приближения вводится новое понятие относительная погрешность. Относительная погрешность - это частное от деления абсолютной погрешности на модуль приближенного значений измеряемой величины. Обычно, относительную погрешность выражают в процентах. В нашем примере мы получили две относительных погрешности равные 0.33% и 0.15%.

Как вы уже догадались, относительная погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность всегда положительная величина, и мы делим её на модуль, а модуль тоже всегда положителен.

Истинное значение физической величины определить абсолютно точно практически невозможно, т.к. любая операция измерения связана с рядом ошибок или, иначе, погрешностей. Причины погрешностей могут быть самыми различными. Их возникновение может быть связано с неточностями изготовления и регулировки измерительного прибора, обусловлено физическими особенностями исследуемого объекта (например, при измерении диаметра проволоки неоднородной толщины результат случайным образом зависит от выбора участка измерений), причинами случайного характера и т.д.

Задача экспериментатора заключается в том, чтобы уменьшить их влияние на результат, а также указать, насколько полученный результат близок к истинному.

Существуют понятия абсолютной и относительной погрешности.

Под абсолютной погрешностью измерений будет понимать разницу между результатом измерения и истинным значением измеряемой величины:

∆x i =x i -x и (2)

где ∆x i – абсолютная погрешность i-го измерения, x i _- результат i-го измерения, x и – истинное значение измеряемой величины.

Результат любого физического измерения принято записывать в виде:

где – среднее арифметическое значение измеряемой величины, наиболее близкое к истинному значению (справедливость x и≈ будет показана ниже), - абсолютная ошибка измерений.

Равенство (3) следует понимать таким образом, что истинное значение измеряемой величины лежит в интервале [ - , + ].

Абсолютная погрешность – величина размерная, она имеет ту же размерность, что и измеряемая величина.

Абсолютная погрешность не полностью характеризует точность произведенных измерений. В самом деле, если мы измерим с одной и той же абсолютной ошибкой ± 1 мм отрезки длиной 1 м и 5 мм, точность измерений будут несравнимы. Поэтому, наряду с абсолютной погрешностью измерения вычисляется относительная погрешность.

Относительной погрешностью измерений называется отношение абсолютной погрешности к самой измеряемой величине:

Относительная погрешность – величина безразмерная. Она выражается в процентах:

В приведенном выше примере относительные ошибки равны 0,1% и 20%. Они заметно различаются между собой, хотя абсолютные значения одинаковы. Относительная ошибка дает информацию о точности

Погрешности измерений

По характеру проявления и причинам появления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные, и промахи (грубые ошибки).

П р о м а х и обусловлены либо неисправностью прибора, либо нарушением методики или условий эксперимента, либо имеют субъективный характер. Практически они определяются как результаты резко отличающиеся от других. Для устранения их появления требуется соблюдать аккуратность и тщательность в работе с приборами. Результаты, содержащие промахи, необходимо исключать из рассмотрения (отбрасывать).

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности - это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале - трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности - это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одной и той же величины.


Похожая информация.