Реакция получения оксида серы 4. Оксиды серы. Серная кислота

Оксид серы (сернистый газ, серы диоксид, ангидрид сернистый) - это бесцветный газ, имеющий в в нормальных условиях резкий характерный запах (похож на запах загорающейся спички). Сжижается под давлением при комнатной температуре. Сернистый газ растворим в воде, при этом образуется нестойкая серная кислота. Также это вещество растворяется в серной кислоте и этаноле. Это один из основных компонентов, входящих в состав вулканических газов.

Сернистый газ

Получение SO2 - диоксида серы - промышленным способом заключается в сжигании серы или обжиге сульфидов (используется в основном пирит).

4FeS2 (пирит) + 11O2 = 2Fe2O3 + 8SO2 (сернистый газ).

В условиях лаборатории сернистый газ можно получить путем воздействия сильных кислот на гидросульфиты и сульфиты. При этом получившаяся сернистая кислота сразу распадается на воду и сернистый газ. Например:

Na2SO3 + H2SO4 (серная кислота) = Na2SO4 + H2SO3 (сернистая кислота).
H2SO3 (сернистая кислота) = H2O (вода) + SO2 (сернистый газ).

Третий способ получения сернистого ангидрида заключается в воздействии концентрированной серной кислоты при нагревании на малоактивные металлы. Например: Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат меди) + SO2 (диоксид серы) + 2H2O (вода).

Химические свойства диоксида серы

Формула сернистого газа - SO3. Это вещество относится к кислотный оксидам.

1. Диоксид серы растворяется в воде, при этом образуется сернистая кислота. В обычных условиях данная реакция обратима.

SO2 (диоксид серы) + H2O (вода) = H2SO3 (сернистая кислота).

2. С щелочами диоксид серы образует сульфиты. Например: 2NaOH (гидроксид натрия) + SO2 (сернистый газ)= Na2SO3 (сульфит натрия) + H2O (вода).

3. Химическая активность сернистого газа достаточно велика. Наиболее выражены восстановительные свойства сернистого ангидрида. В таких реакциях степень окисления серы повышается. Например: 1) SO2 (диоксид серы) + Br2 (бром) + 2H2O (вода) = H2SO4 (серная кислота) + 2HBr (бромоводород); 2) 2SO2 (диоксид серы) + O2 (кислород) = 2SO3 (сульфит); 3) 5SO2 (диоксид серы) + 2KMnO4 (перманганат калия) + 2H2O (вода) = 2H2SO4 (серная кислота) + 2MnSO4 (сульфат марганца) + K2SO4 (сульфат калия).

Последняя реакция - это пример качественной реакции на SO2 и SO3. Происходит обесцвечивание раствора фиолетового цвета).

4. В условиях присутствия сильных восстановителей сернистый ангидрид может проявлять свойства окислительные. Например, для того чтобы в металлургической промышленности извлечь серу из отходящих газов, используют восстановление диоксида серы оксидом углерода (CO): SO2 (диоксид серы) + 2CO (оксид углерода) = 2CO2 + S (сера).

Также окислительные свойства этого вещества используют в целях получения фосфорноваристой ксилоты: PH3 (фосфин) + SO2 (сернистый газ) = H3PO2 (фосфорноваристая кислота) + S (сера).

Где применяют сернистый газ

В основном диоксид серы используют для получения кислоты серной. Также его применяют как в производстве слабоалкогольных напитков (вино и другие напитки средней ценовой категории). Благодаря свойству этого газа убивать различные микроорганизмы, им окуривают складские помещения и овощехранилища. Помимо этого, оксид серы используют для отбеливания шерсти, шелка, соломы (тех материалов, которые нельзя отбелить хлором). В лабораториях сернистый газ применяют в качестве растворителя и в целях получения различных солей кислоты сернистой.

Физиологическое воздействие

Сернистый газ обладает сильными токсическими свойствами. Симптомы отравления - это кашель, насморк, охриплость голоса, своеобразный привкус во рту, сильное першение в горле. При вдыхании диоксида серы в высоких концентрациях возникает затруднение глотания и удушье, расстройство речи, тошнота и рвота, возможно развитие острого отека легких.

ПДК сернистого газа:
- в помещении - 10 мг/м³;
- среднесуточная максимально-разовая в атмосферном воздухе - 0,05 мг/м³.

Чувствительность к диоксиду серы у отдельных людей, растений и животных различна. Например, среди деревьев наиболее устойчивы дуб и береза, а наименее - ель и сосна.

Большая часть оксида серы(IV) используется для производства сернистой кислоты. Оксид серы (IV) применяется также для получения различных солей сернистой кислоты. Серная кислота проявляет кислотные свойства в реакциях с основаниями и основными оксидами. Поскольку серная кислота двухосновна, она образует два ряда солей: средние - сульфаты, например Na2SO4, и кислые - гидросульфаты, например NaHSO4.

Растворяется также в этаноле и се́рной кислоте. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха.

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. Образование белого осадка BaSO4(нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Сернистая кислота существует только в растворе. Триоксид серы проявляется кислотные свойства. Эту реакцию используют для получения важнейшего продукта химической промышленности – серной кислоты. Поскольку сера в триоксиде серы имеет высшую степень окисления, то оксид серы(VI) проявляет окислительные свойства.

Вопрос: Какие химические свойства кислот вы знаете? Используется также в качестве консерванта (пищевая добавка Е220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. 4. Реакции самоокисления-самовосстановления серы возможны и при ее взаимодействии с сульфитами.

Таким образом, SО2, сернистая кислота и ее соли могут про­являть как окислительные, так и восстановительные свойства. Сероводород идет на производство серы, сульфитов, тиосульфатов и серной кислоты, в лабораторной практике – для осаждения сульфидов. Применяется в производстве фосфорной, соляной, борной, плавиковой и др. кислот.

Он проявляет типичные свойства кислотных оксидов и хорошо растворяется в воде, образуя слабую сернистую кислоту. Химические свойства серной кислоты в значительной степени зависят от её концентрации. Медный купорос CuSO4 5Н2O используют в сельском хозяйстве для борьбы с вредителями и болезнями растений.

Соединения серы со степенью окисления +1

3. Напишите уравнения реакций, характеризующих свойства разбавленной серной кислоты как электролита. Пластическая сера темного цвета и способна растягиваться, как резина. Процесс окисления одного оксида в другой является обратимым. Тепловые эффекты химических реакций. Периодическое изменение свойств оксидов, гидроксидов, водородных соединений химических элементов. Физические и химические свойства водорода.

Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы.

Разнообразие форм триоксида серы связано со способностью молекул SO3 полимеризоваться благодаря образованию донорно-акцепторных связей. Полимерные структуры SO3 легко переходят друг в друга, и твердый SO3 обычно состоит из смеси различных форм, относительное содержание которых зависит от условий получения серного ангидрида.

Железный купорос FеSО4 7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями. Глауберова соль» (мирабилит) Nа2SO4 10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.

Она неустойчива и разлагается на сернистый газ и воду. Сернистая кислота не относится к сильным кислотам. Она является кислотой средней силы и диссоциирует ступенчато. Серная кислота вступает в реакции трёх типов: кислотно-основные, ионообменные, окислительно-восстановительные.

Эти реакции лучше проводить с разбавленной серной кислотой. Для серной кислоты характерны ионообменные реакции. Выделение газа происходит в реакциях с солями неустойчивых кислот, распадающихся с образованием газов (угольной, сернистой, сероводородной) либо с образованием летучих кислот, таких как соляная.

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Задание: Составьте уравнение диссоциации сернистой кислоты.

Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Тиосульфат натрия содержит два атома серы в различных степенях окисления и проявляет восстановительные свойства.

SO2 обесцвечивает органические красителя и применяется для отбеливания шелка, шерсти и соломы. Концентрированная серная кислота служит для очистки нефтепродуктов от сернистых и непредельных органических соединений. Благодаря высокой гигроскопичности применяется для осушки газов, для концентрирования азотной кислоты.

Сероводород и сульфиды. При растворении сероводорода в воде образуется слабая сероводородная кислота, соли которой называют сульфидами. Соли сернистой кислоты, как двухосновной, могут быть средними - сульфитами, например сульфит натрия Na2SO3, и кислыми - гидросульфитами, например гидросульфит натрия NaHSO3.

Применяется он также и в качестве растворителя в лабораториях. Учитель: Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы (IV) и воду, поэтому существует только в водных растворах. В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой. Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

Степень окисления +4 для серы является довольно устойчивой и проявляется в тетрагалогенидах SHal 4 , оксодигалогенидах SOHal 2 , диоксиде SO 2 и в отвечающих им анионах. Мы познакомимся со свойствами диоксида серы и сернистой кислоты.

1.11.1. Оксид серы (IV) Строение молекулы so2

Строение молекулы SO 2 аналогично строению молекулы озона. Атом серы находится в состоянии sp 2 -гибридизации, форма расположения орбиталей – правильный треугольник, форма молекулы – угловая. На атоме серы имеется неподеленная электронная пара. Длина связи S – O равна 0,143 нм, валентный угол составляет 119,5°.

Строение соответствует следующим резонансным структурам:

В отличие от озона, кратность связи S – O равна 2, то есть основной вклад вносит первая резонансная структура. Молекула отличается высокой термической устойчивостью.

Физические свойства

При обычных условиях диоксид серы или сернистый газ – бесцветный газ с резким удушливым запахом, температура плавления -75 °С, температура кипения -10 °С. Хорошо растворим в воде, при 20 °С в 1 объеме воды растворяется 40 объемов сернистого газа. Токсичный газ.

Химические свойства оксида серы (IV)

    Сернистый газ обладает высокой реакционной способностью. Диоксид серы – кислотный оксид. Он довольно хорошо растворим в воде с образованием гидратов. Также он частично взаимодействует с водой, образуя слабую сернистую кислоту, которая не выделена в индивидуальном виде:

SO 2 + H 2 O = H 2 SO 3 = H + + HSO 3 - = 2H + + SO 3 2- .

В результате диссоциации образуются протоны, поэтому раствор имеет кислую среду.

    При пропускании газообразного диоксида серы через раствор гидроксида натрия образуется сульфит натрия. Сульфит натрия реагирует с избытком диоксида серы и образуется гидросульфит натрия:

2NaOH + SO 2 = Na 2 SO 3 + H 2 O;

Na 2 SO 3 + SO 2 = 2NaHSO 3 .

    Для сернистого газа характерна окислительно-восстановительная двойственность, например, он, проявляя восстановительные свойства, обесцвечивает бромную воду:

SO 2 + Br 2 + 2H 2 O = H 2 SO 4 + 2HBr

и раствор перманганата калия:

5SO 2 + 2KMnO 4 + 2H 2 O = 2KНSO 4 + 2MnSO 4 + H 2 SO 4 .

окисляется кислородом в серный ангидрид:

2SO 2 + O 2 = 2SO 3 .

Окислительные свойства проявляет при взаимодействии с сильными восстановителями, например:

SO 2 + 2CO = S + 2CO 2 (при 500 °С, в присутствии Al 2 O 3);

SO 2 + 2H 2 = S + 2H 2 O.

Получение оксида серы (IV)

    Сжигание серы на воздухе

S + O 2 = SO 2 .

    Окисление сульфидов

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

    Действие сильных кислот на сульфиты металлов

Na 2 SO 3 + 2H 2 SO 4 = 2NaHSO 4 + H 2 O + SO 2 .

1.11.2. Сернистая кислота и её соли

При растворении диоксида серы в воде образуется слабая сернистая кислота, основная масса растворенного SO 2 находится в виде гидратированной формы SO 2 ·H 2 O, при охлаждении также выделяется кристаллогидрат, лишь небольшая часть молекул сернистой кислоты диссоциирует на сульфит- и гидросульфит-ионы. В свободном состоянии кислота не выделена.

Будучи двухосновной, образует два типа солей: средние – сульфиты и кислые – гидросульфиты. В воде растворяются лишь сульфиты щелочных металлов и гидросульфиты щелочных и щелочно-земельных металлов.

Сера распространена в земной коре, среди других элементов занимает шестнадцатое место. Она встречается как в свободном состоянии, так и в связанном виде. Неметаллические свойства характерны для этого химического элемента. Ее латинское название «Sulfur», обозначается символом S. Элемент входит в состав различных ионов соединений, содержащих кислород и/или водород, образует много веществ, относящихся к классам кислот, солей и несколько окислов, каждый из которых может быть назван оксид серы с добавлением символов, обозначающих валентность. Степени окисления, которые она проявляет в различных соединениях +6, +4, +2, 0, −1, −2. Известны окислы серы с различной степенью окисления. Самые распространенные — это диоксид и триоксид серы. Менее известными являются монооксид серы, а также высшие (кроме SO3) и низшие окислы этого элемента.

Монооксид серы

Неорганическое соединение, называемое оксид серы II, SO, по внешнему виду это вещество является бесцветным газом. При контакте с водой он не растворяется, а реагирует с ней. Это очень редкое соединение, которое встречается только в разреженной газовой среде. Молекула SO термодинамически неустойчива, превращается изначально в S2O2, (называют disulfur газ или пероксид серы). Из-за редкого появления монооксида серы в нашей атмосфере и низкой стабильности молекулы трудно в полной мере определить опасности этого вещества. Но в сконденсированном или более концентрированном виде окисел превращается в пероксид, который является относительно токсичным и едким. Это соединение также легко воспламеняется (напоминает этим свойством метан), при сжигании получается диоксид серы — ядовитый газ. Оксид серы 2 был обнаружен около Ио (одного из в атмосфере Венеры и в межзвездной среде. Предполагается, что на Ио он получается в результате вулканических и фотохимических процессов. Основные фотохимические реакции выглядят следующим образом: O + S2 → S + SO и SO2 → SO + O.

Сернистый газ

Оксид серы IV, или двуокись серы (SO2) является бесцветным газом с удушливым резким запахом. При температуре минус 10 С он переходит в жидкое состояние, а при температуре минус 73 С затвердевает. При 20С в 1 литре воды растворяется около 40 объемов SO2.

Этот оксид серы, растворяясь в воде, образует сернистую кислоту, так как является ее ангидридом: SO2 + H2O ↔ H2SO3.

Он взаимодействует с основаниями и 2NaOH + SO2 → Na2SO3 + H2O и SO2 + CaO → CaSO3.

Для сернистого газа характерны свойства и окислителя, и восстановителя. Он окисляется кислородом воздуха до серного ангидрида в присутствии катализатора: SO2 + O2 → 2SO3. С сильными восстановителями, такими как сероводород, играет роль окислителя: H2S + SO2 → S + H2O.

Сернистый газ в промышленности используют в основном для получения серной кислоты. Диоксид серы получают сжиганием серы или железного колчедана: 11O2 + 4FeS2 → 2Fe2O3 + 8SO2.

Серный ангидрид

Оксид серы VI, или трехокись серы (SO3) является промежуточным продуктом и самостоятельного значения не имеет. По внешнему виду это бесцветная жидкость. Она кипит при температуре 45 С, а ниже 17 С превращается в белую кристаллическую массу. Этот серы (со степенью окисления атома серы + 6) отличается крайней гигроскопичностью. С водой он образует кислоту серную: SO3 + H2O ↔ H2SO4. Растворяясь в воде, выделяет большое количество тепла и, если прибавлять не постепенно, а сразу большое количество оксида, то может произойти взрыв. Триоксид серы хорошо растворяется в концентрированной кислоте серной с образованием олеума. Содержание SO3 в олеуме достигает 60 %. Для этого соединения серы характерны все свойства

Высшие и низшие оксиды серы

Серы представляют собой группу химических соединений с формулой SO3 + х, где х может быть 0 или 1. Мономерный окисел SO4 содержат пероксогруппу (O-O) и характеризуется, как и окисел SO3, степенью окисления серы +6. Этот оксид серы может быть получен при низких температурах (ниже 78 К) в результате реакции SO3 и или фотолизе SO3 в смеси с озоном.

Низшие оксиды серы представляют собой группу химических соединений, в которую входят:

  • SO (оксид серы и его димер S2O2);
  • монооксиды серы SnO (представляют собой циклические соединения, состоящие из колец, образованных атомами серы, при этом n может быть от 5 до 10);
  • S7O2;
  • полимерные оксиды серы.

Интерес к низшим оксидам серы увеличился. Это связано с необходимостью изучения их содержания в наземной и внеземной атмосферах.

Оксид серы(IV) обладает кислотными свойствами, которые проявляются в реакциях с веществами, проявляющими основные свойства. Кислотные свойства проявляются при взаимодействии с водой. При этом образуется раствор сернистой кислоты:

Степень окисления серы в сернистом газе (+4) обусловливает восстановительные и окислительные свойства сернистого газа:

вос-тель: S+4 – 2e => S+6

ок-тель: S+4 + 4e => S0

Восстановительные свойства проявляются в реакциях с сильными окислителями: кислородом, галогенами, азотной кислотой, перманганатом калия и другими. Например:

2SO2 + O2 = 2SO3

S+4 – 2e => S+6 2

O20 + 4e => 2O-2 1

С сильными восстановителями газ проявляет окислительные свойств. Например, если смешать сернистый газ и сероводород, то они взаимодействуют при обычных условиях:

2H2S + SO2 = 3S + 2H2O

S-2 – 2e => S0 2

S+4 + 4e => S0 1

Сернистая кислота существует только в растворе. Она неустойчива и разлагается на сернистый газ и воду. Сернистая кислота не относится к сильным кислотам. Она является кислотой средней силы и диссоциирует ступенчато. При добавлении к сернистой кислоте щёлочи образуются соли. Сернистая кислота даёт два ряда солей: средние – сульфиты и кислые – гидросульфиты.

Оксид серы(VI)

Триоксид серы проявляется кислотные свойства. Он бурно реагирует с водой, при этом выделяется большое количество теплоты. Эту реакцию используют для получения важнейшего продукта химической промышленности – серной кислоты.

SO3 + H2O = H2SO4

Поскольку сера в триоксиде серы имеет высшую степень окисления, то оксид серы(VI) проявляет окислительные свойства. Например, он окисляет галогениды, неметаллы с низкой электроотрицательностью:

2SO3 + C = 2SO2 + CO2

S+6 + 2e => S+4 2

C0 – 4e => C+4 2

Серная кислота вступает в реакции трёх типов: кислотно-основные, ионообменные, окислительно-восстановительные. Так же активно она взаимодействует с органическими веществами.

Кислотно-основные реакции

Серная кислота проявляет кислотные свойства в реакциях с основаниями и основными оксидами. Эти реакции лучше проводить с разбавленной серной кислотой. Поскольку серная кислота является двухосновной, то она может образовывать как средние соли (сульфаты), так и кислые (гидросульфаты).

Ионообменные реакции

Для серной кислоты характерны ионообменные реакции. При этом она взаимодействует с растворами солей, образуя осадок, слабую кислоту либо выделяя газ. Эти реакции осуществляются с большей скоростью, если брать 45%-ную или ещё более разбавленную серную кислоту. Выделение газа происходит в реакциях с солями неустойчивых кислот, распадающихся с образованием газов (угольной, сернистой, сероводородной) либо с образованием летучих кислот, таких как соляная.

Окислительно-восстановительные реакции

Наиболее ярко серная кислота проявляет свои свойства в окислительно-восстановительных реакциях, так как в её составе сера имеет высшую степень окисления +6. Окислительные свойства серной кислоты можно обнаружить в реакции, например, с медью.

В молекуле серной кислоты два элемента-окислителя: атом серы с С.О. +6 и ионы водорода H+. Медь не может быть окислена водородом в степени окисления +1, но сера может. Это является причиной окисления серной кислотой такого неактивного металла, как медь.